


https://info.lightbend.com/COLL-20XX-Actor-Based-Distributed-Systems-Concurrent-Computing-for-Reactive-Architectures_RES-LP.html?lst=OR


Hugh McKee

Designing Reactive Systems
The Role of Actors in

Distributed Architecture

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing



978-1-491-97088-1

[LSI]

Designing Reactive Systems
by Hugh McKee

Copyright © 2016 Lightbend, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com .

Editor: Brian Foster
Production Editor: Nicholas Adams
Copyeditor: Kim Cofer

Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

September 2016:  First Edition

Revision History for the First Edition
2016-09-06: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Designing Reactive
Systems, the cover image, and related trade dress are trademarks of O’Reilly Media,
Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com


Table of Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Summary                                                                                               3

2. Actors, Humans, and How We Live. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
Actor Supervisors and Workers                                                       11

3. Actors and Scaling Large Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
A Look at the Broader Actor System                                              18
How Actors Manage Requests                                                         19
Traditional Systems Versus Actor-based Systems                         23
Expanding into Clusters of Actors                                                  27

4. Actor Failure Detection, Recovery, and Self-Healing. . . . . . . . . . . . .  29
Actors Watching Actors, Watching Actors...                                 30

5. Actors in an IoT Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Location Transparency Made Simple                                             39

6. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

iii





CHAPTER 1

Introduction

We are in the midst of a rapid evolution in how we build computer
systems. Applications must be highly responsive to hold the interest
of users with ever-decreasing attention spans, as well as evolve
quickly to remain relevant to meet the ever-changing needs and
expectations of the audience.

At the same time, the technologies available for building applica‐
tions continue to evolve at a rapid pace (see Figure 1-1). It is now
possible to effectively utilize clusters of cores on individual servers
and clusters of servers that work together as a single application
platform. Memory and disk storage costs have dropped. Network
speeds have grown significantly, encouraging huge increases in
online user activity. As a result, there has been explosive growth in
the volume of data to be accumulated, analyzed, and put to good
use.

Figure 1-1. It’s a New World

1



Put simply, science has evolved, and the requirements to serve the
applications built nowadays cannot rely on the approaches used
over the past 10–15 years. One concept that has emerged as an effec‐
tive tool for building systems that can take advantage of the process‐
ing power harnessed by multicore, in-memory, clustered
environments is the Actor model.

Created in 1973 by noted computer scientist Carl Hewitt, the Actor
model was designed to be “unlike previous models of computation...
inspired by physics, including general relativity and quantum
mechanics.”

The Actor model defines a relatively simple but powerful way for
designing and implementing applications that can distribute and
share work across all system resources—from threads and cores to
clusters of servers and data centers. The Actor model is used to pro‐
vide an effective way for building applications that perform tasks
with a high level of concurrency and increasing levels of resource
efficiency. Importantly, the Actor model also has well-defined ways
for handling errors and failures gracefully, ensuring a level of resil‐
ience that isolates issues and prevents cascading failures and massive
downtime.

One of the most powerful aspects of the Actor model is that, in
many ways, actors behave and interact very much like we humans
do. Of course, how a software actor behaves in the Actor model is
much simpler than how we interact as humans, but these similar
behavioral patterns do provide some basic intuition when designing
actor-based systems.

This simplicity and intuitive behavior of the actor as a building
block allows for designing and implementing very elegant, highly
efficient applications that natively know how to heal themselves
when failures occur.

Building systems with actors also has a profound impact on the
overall software engineering process. The system design and imple‐
mentation processes with actors allows architects, designers, and
developers to focus more on the core functionality of the system and
focus less on the lower-level technical details needed to successfully
build and maintain distributed systems.

2 | Chapter 1: Introduction

https://en.wikipedia.org/wiki/Actor_model
https://en.wikipedia.org/wiki/Carl_Hewitt


“In general, application developers simply do not implement large
scalable applications assuming distributed transactions.”

—Pat Helland

In the past, building systems to support high levels of concurrency
typically involved a great deal of low-level wiring and very technical
programming techniques that are difficult to master. These technical
challenges drew much of the attention away from the core business
functionality of the system because much of the effort had to be
focused on the functional details.

The end result was that a considerable amount of time and effort
was spent on the plumbing and wiring, when that time could be bet‐
ter spent on implementing the important functionality of the system
itself. When building systems with actors, things are done at a
higher level of abstraction because the plumbing and wiring is
already built into the Actor model. Not only does this liberate us
from the gory details of traditional system implementations, it also
allows for more focus on core system functionality and innovation.

Summary
Technology adoption is rarely cyclical; however, in case of the Actor
model (created in the early 1970s) the spotlight is swinging back to
this unique approach to distributed, concurrent computation. As
Forrester Research points out in “How To Capture The Benefits Of
Microservice Design” (2016), the Actor model is receiving “renewed
interest as cloud concurrency challenges grow” in enterprises build‐
ing microservices architectures.

This report is targeted toward decision makers in the enterprise and
provides some high-level insight into how actors and actor systems
can be used to create lightweight business systems that evolve
quickly, that can scale, and that can run without stopping. Inside,
you’ll read how the Actor model’s proven approach to concurrent
computation is the best way to build distributed systems correctly
from the start, allowing your teams to focus on the business logic of
your applications instead of wiring together low-level protocols, in
turn helping you accelerate time-to-market while keeping infra‐
structure costs low.

Summary | 3

http://bit.ly/howtocapture
http://bit.ly/howtocapture




CHAPTER 2

Actors, Humans, and How We Live

Imagine a world where most people are glued to small, hand-held
devices that let them send messages to other humans across oceans
and continents... wait, we already live in this world!

With actors, it is much the same. The only way to contact a software
actor is to send it a message, much like how we exchange text mes‐
sages on mobile devices. As an example, consider a typical text mes‐
sage exchange between you and a friend. While commuting to work
you text your friend and say “Good morning” (see Figure 2-1).

Figure 2-1. Actor messages are like text messages

After you send your friend a message and before she responds, you
are free to do other things, such as sending text messages to other
friends. It’s conceivable that you would also receive requests via text
messages to perform other tasks, which may send you off to do
other things and interact with other people.

5



Your friend may quickly see the message, and responds “Hello, how
R U today?” (see Figure 2-2).

Figure 2-2. Actors behave like humans exchanging text messages

This is basically how messages between software actors behave.
When an actor sends a message to another actor, it does not wait for
a response; it is free to do other things, such as send messages to
other actors.

When you send a text message to a friend or colleague there are a
number of possible outcomes. The typical expected outcome is that
a short time later you get a response message from your friend.
Another possible outcome is that you never get a response to your
message.

If you expect a response and never get one (see Figure 2-3), you
might wait for a while and then try to send her another text message
(see Figure 2-4).

In between getting a quick response and no response is the possibil‐
ity of getting a response after you are unable to or uninterested in
continuing the conversation, because your attention is focused else‐
where. In this example texting conversation scenario, you still do
not get a response.

6 | Chapter 2: Actors, Humans, and How We Live



Figure 2-3. No response to your text, what do you do?

Figure 2-4. No response to a text, send another text

At this point you may be getting somewhat concerned (see
Figure 2-5). You expected your friend to respond, and now you are
unable to get in touch with her. So what do you do next? This is
where you may have to consider your options, such as:

• Wait some more and try to message her again
• Call your friend by phone
• Get in touch with someone else that may know the status of

your friend

Actors, Humans, and How We Live | 7



Figure 2-5. Still no response

To be fair, there is a fourth option: stand still and do nothing until
you hear from your friend. Blocking all activities until a response is
received is probably not considered a feasible thing for most
humans, and would make for a pretty inefficient world; yet in many
traditional systems, this is precisely what happens, and why the
Actor model was created.

Just as with humans sending text messages, actors that can send and
receive messages are prepared for multiple possible outcomes: a
response may be received quickly, there may be no response at all, or
there may be a response that is too late to be useful. The point here
is that the actor may be implemented to handle one or more of these
possible outcomes.

A well-defined actor can not only handle a typical expected message
exchange, it may be capable of handling the other possible out‐
comes. For example, Actor A sends a message to Actor B. The mes‐
sage is a request to B to perform a specific task.

The desired outcome is for B to perform the task and then send a
response message back to A (see Figure 2-6). There is a possibility
that B is unable to perform the request task and, as a result, A never
gets a response (see Figure 2-7). A is prepared for this and has a plan
to handle not getting a response.

8 | Chapter 2: Actors, Humans, and How We Live



Figure 2-6. Actor A sends a message to B and later gets the expected
response

Figure 2-7. Actor B never responds to message from A

A common approach for handling a no-response scenario is for the
actor to send a request to another actor to perform a task, setting up
a timeout message to be sent to itself at some point in the future. If
A asks B to perform a task and B responds back to A before the
timeout message arrives, then all is well and A cancels the timeout
message (see Figure 2-8).

Actors, Humans, and How We Live | 9



Figure 2-8. Actor A sends message to B and it responds before the
timeout

On the other hand, if the timeout message arrives, this triggers A to
switch to an alternate plan. How it handles this alternate scenario is
very specific to each actor. In some cases, Actor A may simply
resend the message to Actor B. In other cases, Actor A may give up
and report an error back upstream to the sender of the message that
triggered A in the first place (see Figure 2-9).

Figure 2-9. No response from Actor B and A gets timeout message

10 | Chapter 2: Actors, Humans, and How We Live



The key point here is that actors exchange messages with each other
to communicate. These messages are sent asynchronously, very
much in the way humans exchange text messages. Due to this asyn‐
chronous behavior, actors are designed not only for the expected
happy path, they are also designed and implemented to handle the
unhappy path. In the Actor model, failure handling and recovery is
an architectural feature, and not treated as an afterthought.

Actor Supervisors and Workers
Actors may create other actors. When one actor creates another
actor, the creator is known as the supervisor and the created actor is
known as the worker. Worker actors may be created for many rea‐
sons, but among the most common reasons is for delegating work.
The supervisor creates one or more worker actors and delegates
work to them (see Figure 2-10).

Figure 2-10. Supervisor actor creates worker actors

The supervisor also becomes a caretaker of the workers. Just as with
a parent watching over the well-being of their children, the supervi‐
sor watches out for the well-being of its workers. If a worker runs
into a problem, it suspends itself and notifies its supervisor of the
failure (Figure 2-11).

Actor Supervisors and Workers | 11



Figure 2-11. Worker actor has problem and notifies its supervisor

When the supervisor is notified it determines what should be done
to handle the problem and how to get the worker actor back into a
healthy state (see Figure 2-12).

Figure 2-12. Supervisor fixes worker that has experienced a problem

Because the supervisor can send messages asynchronously, without
having to wait for a response, the supervisor may send messages to
each of its workers, which run independently and concurrently. This
is in contrast to the traditional sequential programming model.

12 | Chapter 2: Actors, Humans, and How We Live



Let’s consider a scenario where a supervisor actor receives a message
to perform a task. In order for the supervisor to complete this
request, it must complete three subtasks (see Figure 2-13):

• Obtain the customer profile
• Pull recent customer activity
• Calculate customer-specific sales opportunities

The supervisor delegates this work to three worker actors. The indi‐
vidual actors used are specifically designed to handle the individual
tasks, so that one actor knows how to get a customer’s profile and
the other two actors are each designed to pull recent activity and cal‐
culate sales opportunities.

Figure 2-13. Supervisor actor delegates tasks to worker actors

The supervisor sends messages to each of the three worker actors
asking them to perform their specific tasks. When each worker
completes its task, it sends a message back to the supervisor with the
results. Once all three workers have responded, the supervisor com‐
bines the results into a single response to the actor that sent it the
initial request.

There are a number of benefits to this approach of delegating the
work out to worker actors. One key benefit is performance. Because
the workers run concurrently, the performance is based on the over‐

Actor Supervisors and Workers | 13



all time it takes for the supervisor to respond and reduced to the
response time of the slowest worker.

Contrast this to the traditional synchronous approach: when these
three tasks are processed sequentially, the overall response time =
task 1 time + task 2 time + task 3 time (see Figure 2-14). In the
Actor model, these three tasks are processed asynchronously, so that
the overall response time = maximum(task 1 time, task 2 time, task
3 time).

Figure 2-14. Worker actors perform tasks asynchronously

The asynchronous approach also scales more efficiently
(Figure 2-15). The cost of adding more workers is much less than in
a synchronous implementation.

14 | Chapter 2: Actors, Humans, and How We Live



Figure 2-15. Ten 100 ms tasks performed synchronously take 1 second
while the same ten tasks performed asynchronously take about 100 ms
to complete

Say there is a need to add more functionality to this process, and
you want to do more things for the customer to make the applica‐
tion more useful and attractive. With the asynchronous approach,
the overall response time is still the response time of the slowest
worker, while the response time for the synchronous approach
increases with each added worker. This is exactly how highly effi‐
cient and feature-rich sites like Netflix and LinkedIn architect their
systems.

Another benefit of the asynchronous delegated approach is related
to failure resilience and recovery.

Recall the timeout approach previously discussed. In this scenario,
the supervisor schedules a timeout message to be sent to itself when
it sends tasks to each of the workers. This provides a way for the
supervisor to handle workers that are unable or are slow to respond.
The supervisor will only wait so long for the workers to respond. If a
worker does not respond in time, then the supervisor decides how
to proceed. How this is handled is application specific, but some
typical approaches used are to simply omit the missing information,

Actor Supervisors and Workers | 15



or to submit some default information in its place. The main point
here is that a slow service or a down service is not going to break the
system.

The main takeaways of this chapter are:

• Actors exchange messages asynchronously.
• Actors typically are set up to handle all contingencies, both

when things work as expected and how to handle the unexpec‐
ted.

• Actors can create other actors in a supervisor-worker relation‐
ship.

• Supervisors can delegate tasks to workers, and also take care of
workers that run into problems.

16 | Chapter 2: Actors, Humans, and How We Live



CHAPTER 3

Actors and Scaling Large Systems

One actor is no actor. Actors come in systems.
—Carl Hewitt

As discussed previously, actors can create other actors in a
supervisor-worker relationship, where the supervisor delegates tasks
to the workers. In the previous example, the supervisor delegated
specific subtasks to the workers. Another common pattern provides
a level of elasticity as more work requests arrive, and then the super‐
visor delegates the tasks to idle workers. If there are no idle workers,
then the supervisor adds more workers (see Figure 3-1).

Figure 3-1. Supervisor adds more worker actors as the processing load
increases

How the supervisor decides to add workers is up to the supervisor.
Supervisors typically have some limit as to how many workers they
will add, as well as a built-in way for shedding excess idle workers
(see Figure 3-2).

17



Figure 3-2. The supervisor sheds workers as the load decreases

Here again the scheduled timeout mechanism comes into play. Each
of the workers could schedule an idle timeout message to be sent at
some point in the future. Every time a worker gets a request to per‐
form a task, it resets the timeout. If no tasks are sent to a worker,
and it receives the timeout message that tells the worker that it has
been idle for too long, it triggers a shutdown of itself.

Using this relatively simple pattern provides for elastic scalability on
the actor level, where a supervisor is free to expand out when the
workload increases and contract in when the workload decreases.
Other strategies and technologies may be used to support various
forms of elasticity across the complete system, but the basic func‐
tionality of actors allows for a lot of creativity in how application
systems may be designed and implemented.

Another point to be made here is that the supervisor is also an actor.
From the perspective of other actors that send it messages, the fact
that the supervisor is delegating tasks out to workers is completely
transparent to the senders. Imagine again sending a friend a text
message asking him to perform some task. You have no idea how he
may actually carry out that task. Your only concern is that the task
gets completed, and it gets completed in the time frame that you
expect. If it happens that he is delegating these tasks to a team of
workers, it is none of your concern. It is also transparent to you that
while he’s working on your task, he may also be concurrently work‐
ing on tasks for others.

A Look at the Broader Actor System
Actors exist within an actor system, and the process of actors send‐
ing asynchronous messages to each other is handled by the actor
system. Yet an actor system provides much more than just the pro‐
tocol for messaging between actors; it is also designed to manage

18 | Chapter 3: Actors and Scaling Large Systems



actor activities by allocating the system resources needed to support
the actor environment.

The following section covers how the actor system coordinates the
activities of the actors and how the actor system allocates system
resources at a conceptual level. We use an analogy of comparing
actors working in the actor system to that of office workers working
in office spaces. The goal here is to provide some insight and intu‐
ition of the mechanics of how the actor system runs without going
too deeply into the technical details.

Virtually every computer system is composed of a set of processing
cores, some memory (RAM), and other resources such as disk
space, network interfaces, and other devices. In this discussion the
focus is on memory and processing cores.

When programs run in a computer system, the actual work is han‐
dled by what is called a thread or thread of execution. Just as each
computer system has a limited number of cores and a limited
amount of memory, there is also a limited number of threads. A typ‐
ical computer system has a small number of cores, and common
small or medium-sized servers may have 4 to 16 processing cores.
(Just looking at Amazon Web Services instances, you can see it’s
possible to provision cloud instances with 128 processor cores and 2
terabytes of in-memory RAM.) For memory (RAM), this varies
from a few gigabytes to terabytes. A typical server has 8GB to 64GB,
but this number keeps going up as the cost of memory decreases in
light of technological improvements. For threads, the count typically
falls into the hundreds range.

The number of cores and the amount of memory dictates how much
work a given computer system is capable of handling. This is
roughly analogous to a room. Depending on the size of an office
space, more workers will fit in the room if it is larger, which means
it can handle more work (threads).

How Actors Manage Requests
In this example scenario, we have a room that can fit three desks at
which workers sit and do work. Requests to do work come into the
office, with each task delegated to an available worker. Workers can
only work on their assigned tasks when the desk has power, which
in this example scenario is a limited resource (see Figure 3-3).

How Actors Manage Requests | 19

https://aws.amazon.com/ec2/instance-types/


Figure 3-3. An office example where workers sit at desks to perform
tasks only when the desk has power

We are going to use this office space analogy to discuss how the
actor system coordinates actor activity in a computer system. The
idea is that the room size determines how many desks will fit into a
room. This is an attempt to model how the memory size of a given
computer system determines how many threads can be supported.
So room size is analogous to memory size, and the number of desks
is analogous to the number of threads. Workers sit at desks to get
work done.

To model the processing cores, the idea is that a worker sitting at a
desk can only do work when the power is turned on (see
Figure 3-4). This demonstrates how a given thread is only active
when it is given a processing core to run on. Compared to the num‐
ber of available cores on which to do work, there are many more
threads representing the requests for work to be done. In this office
analogy, there are a limited number of desks that can be powered on
at any point in time.

20 | Chapter 3: Actors and Scaling Large Systems



Figure 3-4. One desk has power, so the worker at that desk may work
on its assigned task

Now imagine that in this hypothetical office the workers perform
tasks that are coming in from the outside. For example, customers
are sending in text messages to the office. These text messages are
delegated to available workers sitting at the desks (see Figure 3-5).

How Actors Manage Requests | 21



Figure 3-5. Messages are sent to the office and then routed to each
worker

The power is constantly being shifted between desks to the workers
that are ready to process these text messages. It is the responsibility
of the system to make sure that no single worker can hog one of the
limited power connections (see Figure 3-6).

This works the same in a computer system, which must constantly
shift from thread to thread, allocating limited processing cores while
trying to maintain a fair utilization of cores with all of the threads
that are ready to run. So in the same way that our office example has
more desks than available power connections, computer systems
also have many more threads than available processing cores.

22 | Chapter 3: Actors and Scaling Large Systems



Figure 3-6. The system swaps the power between desks to allow an
even distribution of work

Traditional Systems Versus Actor-based
Systems
So how does this work in traditional, synchronous systems versus
those built on the Actor model?

This constant shifting of the processing cores from thread to thread
happens in all computer systems. When running traditional syn‐
chronous systems versus actor-based asynchronous systems, the dif‐
ference is how the threads themselves are managed.

With synchronous systems, a thread is assigned to a request and it
handles it until the processing of the request is completed with a
response. This also includes holding the thread while waiting for
I/O to complete. With asynchronous systems, threads are managed
more dynamically—threads are only allocated to actors when they
are ready to run and they are ready to use an available processing

Traditional Systems Versus Actor-based Systems | 23



core. When an actor must stop and wait for an I/O to complete, the
thread is released and made available to be allocated to another actor.

In a synchronous software system, the common approach is that
when a request is received it is delegated to a thread and that thread
is responsible for handling that request until it is completed and a
response is returned. In our office analogy, this is modeled with text
messages sent to the office, where the office delegates the text mes‐
sage to a worker sitting at a desk, and that worker handles that
request until it is completed. Once the office worker is assigned to a
desk, she will stay at that desk until the given task is completed.

With the synchronous processing approach, the system limit for
how many requests can be processed concurrently is limited by the
number of threads. With the text messages example, the limit of the
concurrently handled text messages is the number of desks. If the
office space allows for 100 desks then that office can concurrently
handle 100 text messages. When all of the workers at the desks are
busy handling text messages, if more text messages arrive they will
not be processed until some of the workers complete their current
task and are ready to do more work. When text messages arrive
faster than they can be processed the system needs to either put the
pending requests into a queue or reject the excess messages (see
Figure 3-7).

In addition, with the synchronous processing approach, when the
processing must be suspended while waiting for various I/O opera‐
tions to complete, the thread that is handling the request is idle, yet
still in use and consuming memory. This is like the office worker sit‐
ting at a desk doing nothing while he waits for some operation to
complete.

The idea is that the office worker received the incoming text mes‐
sage, which triggers the office worker to send another text message
to someone else to perform some subtask, and the office worker is
sitting there idle waiting for a response text message. The result is
that the limited threads are in use but not doing any useful work,
much like an office worker sitting at a desk doing no useful work
while waiting for someone else to finish a subtask. In the office
example, the number of desks limits how many text messages can be
handled at one time.

24 | Chapter 3: Actors and Scaling Large Systems



Figure 3-7. When messages arrive faster than the workers can perform
each task, then there is a backlog of pending messages that are either
queued or discarded

With the Actor model, the dynamics of the system are very different.
The actor system processes things asynchronously.

In our office model, workers only occupy a desk when they have
something to do. When a worker is idle, she goes to the side of the
room and the desk is freed up for other workers to use. In an actor
system, threads are allocated to actors that have messages to process.
When the actor has no messages to process, the thread is allocated
to other actors that have messages to process and that have some‐
thing to do, so that they are not sitting idle while waiting for
something like an I/O to complete (see Figure 3-8).

Traditional Systems Versus Actor-based Systems | 25



Figure 3-8. In an asynchronous system, workers only occupy desks
when they have something to do

At the same time, no single actor can squat on a thread doing noth‐
ing. Even when an actor still has more messages to process, it is
given a limited amount of time with a thread. The system is con‐
stantly moving the threads around to various actors trying to main‐
tain a fair distribution of thread usage without letting some actors
dominate their time with threads or, conversely, let some actors be
starved for attention.

The end result is that asynchronous actor systems can handle many
more concurrent requests with the same amount of resources since
the limited number of threads never sit idle while waiting for I/O
operations to complete.

This is analogous to the office model. In the synchronous processing
flow, there is the possibility for many workers sitting at the limited
number of desks to be idle at any point in time. With the asynchro‐
nous processing flow, a worker that is idle or has nothing to do goes
to the side of the room, which frees up the desk for another worker
that is ready to do some work.

26 | Chapter 3: Actors and Scaling Large Systems



Expanding into Clusters of Actors
The story does not end there. Say things get to the point where the
rate of work to be done has outgrown the maximum message pro‐
cessing rate of the current office. Even with the use of asynchronous
actors and their efficient use of a single system, the level of activity
may still get to the point that the flow of work to be done exceeds
the capacity of the system to process it. To address this the actor sys‐
tem can form clusters. A cluster is where two or more systems, each
running an actor system, are configured to work as a collaborative
group (see Figure 3-9).

Figure 3-9. Actor systems may run in a cluster

From the perspective of the actors running in a cluster, there is no
difference between sending messages to actors in the same system,
or between actors on different systems because the actor system still
handles all the actual messaging between actors. Of course, messag‐
ing between actors on different systems takes more time (i.e., in the
milliseconds range) than messaging on the same system. However,
the actor system is optimized to handle both the local and remote
forms of messaging. The typical actor system is capable of handling
millions of messages per second, and this applies from a single sys‐
tem cluster to many system clusters.

The actor system cluster capability provides the building blocks for
elastically expanding the processing capacity as the load goes up and
contracting the capacity as the load goes down. This level of elastic‐
ity cannot be patched on after the fact, but must be designed as a
part of the architecture of each individual application implementa‐
tion.

In some implementations, there are manual processes used to
expand and contract the cluster as needed. In other implementa‐
tions, elasticity is handled automatically by the application. The key

Expanding into Clusters of Actors | 27



point here is that the actor system provides all the building blocks
needed for creating clusters, which can then be used to architect,
design, and implement distributed systems that can elastically
expand and contract as needed.

This is in stark contrast to the traditional ways we have been build‐
ing systems for the past decade and longer. With older system archi‐
tectures, we are typically forced to scale vertically, using larger and
larger systems and an ever-expanding infrastructure footprint. In
these systems, there were limited options to distribute the work hor‐
izontally across multiple systems. In addition, the scale of these tra‐
ditional synchronous systems is static, in that these systems were
sized to reasonably handle peak loads. This results in low resource
utilization because during slow times you are paying for wasted
capacity that is sitting idle and, to make matters worse, it is
extremely difficult to predict what the peak loads will be. The typical
results are when there are peak periods of activity and capacity is
insufficient to handle the load. When this happens, the system users
suffer annoying response times. Annoyed users are more often for‐
mer users because in many cases they can take their business else‐
where in an instant.

Ultimately, asynchronous processing provides a way of doing more
work with less processing capacity. Clustering provides the building
blocks for building application systems that grow and contract as
the processing load requires. These two features of the actor system
directly impact the operational costs of your application system: you
use the processing capacity that you have more efficiently and you
use only the capacity that is needed at a given point in time.

The main takeaways in this chapter are:

• Delegation of work through supervised workers allows for
higher levels of concurrency and fault tolerance.

• Workers are asynchronous and run concurrently, never sitting
idle as in synchronous systems.

• Efficient utilization of system resources (CPU, memory, and
threads) results in reduced infrastructure costs.

• It’s simple to scale elastically at the actor level by increasing or
decreasing workers as needed.

• Using clusters gives the ability to scale at the system level.

28 | Chapter 3: Actors and Scaling Large Systems



CHAPTER 4

Actor Failure Detection, Recovery,
and Self-Healing

In the previous chapters, we covered some of the features of actors
and how they relate to handling errors and failure recovery. Let’s dig
a little deeper into this, shall we?

There are a number of strategies available for handling errors and
recovering from failures both at the actor level and at the actor sys‐
tem level.

At the actor level, failure handling and recovery starts with the
supervisor-worker relationship. Actors that create other actors are
direct supervisors, and for error handling this means that supervi‐
sors are notified when a worker runs into a problem. In the supervi‐
sor role, there are four well-known recovery steps that may be
performed when they are notified of a problem with one of their
workers:

1. Ignore the error and let the worker resume processing
2. Restart the worker and perform a worker reset
3. Stop the worker
4. Escalate the problem to the supervising actor of the supervisor

How a supervisor handles problems with a worker is not limited to
these four recovery options, but other custom strategies may be used
when necessary.

29



All actors have a supervisor. Actors will form themselves into a hier‐
archy of worker to supervisor to grand-supervisor and so on (see
Figure 4-1). At the top of the hierarchy is the actor system. If a prob‐
lem is escalated to the actor system, its default recovery process is to
restart the worker (or terminate the worker when more serious
problems occur). This supervisory approach frees up the worker
from handling its own errors, which means that it is focused com‐
pletely on performing its tasks. This allows for creating actors with
much less error handling code that clutters and hides the main busi‐
ness logic.

Figure 4-1. Actors form hierarchies

Actors Watching Actors, Watching Actors...
In addition to this supervision strategy, the actor system provides a
way for one actor to monitor another actor. If the watched actor is
terminated, the watcher actor is sent an “actor terminated” message.
How the watcher reacts to these terminated messages is up to the
design of the watcher actor. This sentinel pattern allows for building
some very innovative application features. This pattern is often used
to implement forms of self healing into a system (see Figure 4-2).

30 | Chapter 4: Actor Failure Detection, Recovery, and Self-Healing



Figure 4-2. Sentinel actors watch actors on other nodes in the cluster

In this example, critical actors may be monitored across nodes in a
cluster. If the node where a critical actor is running fails, the sentinel
actors are notified (see Figure 4-3). This can trigger some form of
recovery and self-healing process by the sentinel actor.

Figure 4-3. When a node fails, the sentinel actors are notified via an
actor terminated message

It is common for a set of actors to perform some type of dangerous
operation outside of the actor system. By “dangerous operations” we
mean one that is more likely to fail from time to time—for example,
among a set of actors that perform database operations.

In order to successfully perform these database operations, a lot of
things need to be up and running. The backend database server
needs to be running and healthy. The network between the actors
and the database server needs to be working. When something fails,
all of the actors that are trying to do database operations fail to com‐
plete their tasks. To exacerbate the problem, in many cases this trig‐
gers retries, where either the systems automatically retry failed
operations or users seeing errors retry their unsuccessful actions.
The end result is that the downed service may be hammered with
requests and this increased load may actually hinder the recovery
process.

Actors Watching Actors, Watching Actors... | 31



To deal with these types of problems, there is an option to protect
vulnerable actors with circuit breakers (see Figure 4-4). Here, a cir‐
cuit breaker encapsulates actors so that messages must first pass
through the circuit breaker, which are generally configured to be in
a closed or open state. Normally, the circuit breaker is in a closed
state, meaning that the connection allows messages to pass through
to the actor. If the actor runs into a problem, the circuit breaker
opens the connection and all messages to the wrapped actor are
rejected. This stops the flow of requests to the backend service. The
idea is to avoid hammering a failed service, such as a down database,
when you know that all the requests are going to fail.

Figure 4-4. Circuit breakers can be used to stop the flow of messages to
an actor when something unusual happens

Circuit breakers are configured to periodically allow a single mes‐
sages to pass to the actor, which is done to allow checks to see if the
error has been resolved. If the message fails, the circuit breaker
remains open. However, when a message completes successfully the
circuit breaker will close, which allows for resuming normal opera‐
tions. This provides for a straightforward way to quickly ascertain a
failure and begin the self-heal process once the problem is resolved.
This also comes with the added benefit of providing a way for the
system to back off from a failed service.

32 | Chapter 4: Actor Failure Detection, Recovery, and Self-Healing



Another added benefit of the use of circuit breakers is that they pro‐
vide a way for avoiding cascading failures. A common problem that
may happen when these types of service failures occur is that the cli‐
ent system may experience a log jam of failing requests. The failed
request may generate more retry requests. When the service is down
it may take some time before the error is detected due to network
request timeouts. This may result in a significant buildup of service
requests, which then may result in running out of systems resources,
e.g., memory.

On a larger scale, when running a cluster of two or more server
nodes, each of the nodes in the cluster monitors the other nodes in
the cluster. The cluster nodes are constantly gossiping behind the
scenes in order to keep track of each other, so that when a node in
the cluster runs into a problem and fails or is cut off from the other
nodes due to a network issue, the remaining nodes in the cluster
quickly detect the problem.

Actor flexibility extends even into being notified when there are
node changes to the cluster. This not only includes nodes leaving the
cluster, but also nodes joining the cluster. This feature allows for the
creation of actors that are capable of reacting to cluster changes.
Actors that want to be notified of cluster changes register their inter‐
est with the actor system. When cluster node changes occur, the reg‐
istered interested actors are sent a message that indicates what
happened. What these actors do when notified is application spe‐
cific. As an example, actors that monitor state changes to the cluster
may be implemented to coordinate the distribution of other actors
across the cluster. When a node is added to the cluster, the actors
that are notified of the change react by triggering the migration of
existing actors to the new node. Conversely, when nodes leave the
cluster, these actors react to the failure by recovering the actors that
were running on the failed node on the remaining nodes in the clus‐
ter.

The main takeaways of this chapter are:

• Actor supervision handles workers that run into trouble, han‐
dling error recovery that frees workers to focus on the task at
hand.

• Actors may watch for the termination of other actors and react
appropriately when this happens.

Actors Watching Actors, Watching Actors... | 33



• Actors may be wrapped in a circuit breaker that can stop the
flow of messages to an actor that is unable to perform tasks due
to some other, possibly external, problem. Circuit breakers
allow for graceful recovery and self-healing, stemming the flow
of traffic to a failed service to accelerate the service recovery
process.

• Actors may be cluster aware and designed to be notified when
nodes join or leave the cluster. This can be used to react to the
cluster changes.

34 | Chapter 4: Actor Failure Detection, Recovery, and Self-Healing



CHAPTER 5

Actors in an IoT Application

In this final chapter, let’s work through a more realistic example of
using actors to implement features in a real-life system. In this
example, we are responsible for building an Internet of Things (IoT)
application, in which we currently have hundreds of thousands of
devices that are monitored continuously (with the expectation of
this to grow over time into the millions).

Each device periodically feeds status data back to the application
over the Internet. We decide that we want to represent each device
with an actor that maintains the state of the device in our system.
When a message arrives over the Internet to our application the
message somehow needs to be routed to the specific actor.

Our system then will have to support millions of these device actors.
The good news is that actors are fairly lightweight (a default actor is
only 500 bytes in size, compared to 1 million bytes for a thread), so
they do not consume a lot of memory; however, in this case one
node cannot handle the entire load. In fact, we do not want to run
this application on a single node, we want to distribute the load
across many nodes so as to avoid any bottlenecks or performance
issues with our IoT application. Also, we want an architecture that
can scale elastically as more devices come online, so the application
must be able to scale horizontally across many servers as well as
scale vertically on a single server.

35



As a result of these requirements, we decide to go with an actor sys‐
tem that runs on a cluster on multiple nodes. When messages from
devices are sent to the system, a given message may be sent to any
one of the nodes in the cluster. This brings some questions to the
table:

• What specific set of actors could support this system?
• How can the system handle scaling up when adding new nodes?
• What happens when a given node in the cluster fails?
• Finally, how do we route device messages to the right device

actor across all of the nodes in the cluster?

Of course, for most software problems there may be many possible
solutions, so to meet these requirements we offer the following pos‐
sible solution. Recall that an actor may register itself with the actor
system to be notified when a node joins or leaves the cluster. We
implement an actor that runs on each node in the cluster. This actor
handles incoming device messages that are sent to the node that it is
running on. It also receives messages from the actor system when
nodes join or leave the cluster. In this way, each actor that is resident
on a node in the cluster is always aware of the current state of the
entire cluster.

Let’s call this the Device Message Router actor (shown as DMR in the
diagram). Every message in this example contains the device’s
unique identifier. The DMR actor is a supervisor that has to find the
specific device actor (shown as D in the diagram) using the device
identifier so that it can forward the message to it (see Figure 5-1).

36 | Chapter 5: Actors in an IoT Application



Figure 5-1. Device Message Router actor manages device actors

But wait, how do we know what node in the cluster contains the
specific device actor? We are running in a cluster of many nodes and
a given device actor is located somewhere out on one of those nodes.

The solution for locating specific device actors is to use a well-
known algorithm called the consistent hashing algorithm. Without
going into too much detail, consistent hashing provides for a very
efficient way to distribute a collection of items, such as a collection
of our device actors, across a number of dynamically changing
nodes. We use this algorithm to determine which node currently
contains a given device actor (see Figure 5-2). When a request is
randomly sent to one of the DMR actors, it uses the consistent hash‐
ing algorithm to determine which node actually contains that device
actor.

Actors in an IoT Application | 37

https://en.wikipedia.org/wiki/Consistent_hashing


Figure 5-2. Device message routing across the cluster using the consis‐
tent hashing algorithm

If the device actor happens to be on the same node, then the DMR
actor simply forwards the message to this local device actor. How‐
ever, if the device actor is located on another node, the DMR actor
forwards the message to the DMR actors on the other nodes (see
Figure 5-3). When the DMR actors on the other nodes receive the
forwarded message, they perform the consistent hashing algorithm
to determine if the device actor is on the same node and forwards
the message.

Figure 5-3. Routing device messages across the cluster using DMRs

38 | Chapter 5: Actors in an IoT Application



Location Transparency Made Simple
What we have so far is pretty good but we are not done yet. What
happens when a new node joins the cluster? How do we handle the
migration of nodes to the new node? The beauty of the consistent
hashing algorithm is that when the number of nodes changes, the
index of some of the devices that were located on other nodes will
now point to a new node. Say a device was on Node 2 of a cluster of
three nodes. When a fourth node is added to the cluster, the device
actor that was on Node 2 is now located on Node 4. When the
request for that device comes into the system, the message will now
be routed to the DMR actors resident on Node 4.

There is one thing that we have not addressed yet. How are device
actors created on the nodes in the cluster in the first place?

The answer is that the DMR actors create device actors for each
device. When a DMR actor first receives a message from a device
and it determines that the device actor is resident on the same node,
it checks to see if that actor exists or not. This can be done simply by
attempting to forward the message to the device actor. If there is no
acknowledgment message back from the device actor, this triggers
the DMR actor to create the device actor. When a device actor first
starts up, it does a database lookup to retrieve information about itself
and then it is ready to receive messages.

But let’s not forget about the old actor... is it still on the previous
node after is has migrated to a new node? And how do we handle
device actors that have migrated to another node when the topology
of the cluster changes?

A simple solution for this problem is to use an idle timeout message.
Recall that actors can tell the actor system to send itself a message at
some time in the future. We set up each device actor to always
schedule an idle timeout message. Whenever a device actor receives
a device message, it cancels the previously scheduled idle timeout
message and schedules a new one. If the device actor receives an idle
timeout message, then it knows to terminate itself.

Because the device status messages are no longer routed to the old
device actor, the idle timeout will eventually expire and the timeout
message will be sent to the device actor by default. Using these fairly
simple mechanisms, such as self-scheduled messages, we have

Location Transparency Made Simple | 39



designed a fairly simple way to clean up device actors that have
migrated to new nodes in the cluster.

There is an added bonus to this solution. What happens when we
lose a node in the cluster? This is handled in the same way that we
handle new nodes when they are added to the cluster. Just as when
new nodes are added, any nodes leaving the cluster impacts the con‐
sistent hashing algorithm. In this case, the device actors that were on
the node that failed are now automatically migrated on the remain‐
ing nodes in the cluster. We already have the code in place to handle
this.

One last major detail. How do the DMR actors know how many
nodes are in the cluster at any point in time?

The answer is that there is a way for actors to retrieve these details
from the actor system, recalling the sentinel actor concept where
actors ask the actor system to send them a message when nodes join
or leave the cluster. In our system, the DMR actors are set up to
receive messages when nodes join or leave the cluster. When one of
these node-joining-the-cluster or node-leaving-the-cluster messages
is received, this triggers the DMR actor to ask the actor system for
the details of the current state of the cluster. Using that cluster status
information it is possible to determine exactly how many nodes are
currently in the cluster. This node count is then used when perform‐
ing the consistent hashing algorithm.

Of course, this design is not complete; there are still more details
that need to be worked out, but we have worked out some of the
most important features of the system. Now that we have worked
out this design, consider how you would design this system without
the use of actors and an actor system.

Ultimately, the solution here handles scaling up when it is necessary
to expand the capacity of the system to handle increased activity, as
well as recovering failures without stopping and without any signifi‐
cant interruption to the normal processing flow.

The actual implementation of the two actors here is fairly trivial
once we have the design details worked out. The design process
itself was also fairly straightforward and did not get bogged down
in excessive technical details. This is a small example of the power
and elegance of the Actor model, where the abstraction layer pro‐
vided by actors and the actor system lifts us above the technical

40 | Chapter 5: Actors in an IoT Application



plumbing details that we have to deal with in traditional, synchro‐
nous architectures.

The main takeaways of this chapter are:

• Clustered actor systems can be designed for resiliency and elas‐
ticity.

• Actors can be implemented to react to nodes leaving and join‐
ing a cluster.

• Work can be distributed across a cluster.
• Actors and actor systems provide an abstraction layer that

allows for higher levels of concurrency.

Location Transparency Made Simple | 41





CHAPTER 6

Conclusion

Today, it is now possible to create distributed, microservices-based
systems that were impossible to even dream of just a few short years
ago. Enterprises across all industries now desire the ability to create
systems that can evolve at the speed of the business and cater to the
whims of users. We can now elastically scale systems that support
massive numbers of users and process huge volumes of data. It is
now possible to harden systems with a level of resilience that enables
them to run with such low downtime that it’s measured in seconds,
rather than hours.

One of the foundational technologies that enables us to create
microservices architectures that evolve quickly, that can scale, and
that can run without stopping, is systems based on the Actor model.
It’s the Actor model that provides the core functionality of Reactive
systems, defined in the Reactive Manifesto as responsive, resilient,
elastic, and message driven (see Figure 6-1).

In this report, we have reviewed some of the features and character‐
istics of how actors are used in actor systems, but we have only
scratched the surface of how actor systems are being used today.

43

http://www.reactivemanifesto.org/


Figure 6-1. The four tenets of reactive systems

The fact that actor systems can scale horizontally, from a single node
to clusters with many nodes, provides us with the flexibility to size
our systems as needed. In addition, it is also possible to implement
systems with the capability to scale elastically, that is, scale the
capacity of systems, either manually or automatically, to adequately
support the peaks and valleys of system activity.

With actors and actor systems, failure detection and recovery is an
architectural feature, not something that can be patched on later.
Out of the box you get actor supervision strategies for handling
problems with subordinate worker actors, up to the actor system
level, with clusters of nodes that actively monitor the state of the
cluster, where dealing with failures is baked into the DNA of actors
and actor systems. This starts at the most basic level with the asyn‐
chronous exchange of messages between actors: if you send me a
message, you have to consider the possible outcomes. What do you
do when you get the reply you expect and also what do you do if you
don’t get a reply? This goes all the way up to providing ways for
implementing strategies for handling nodes leaving and joining a
cluster.

Thinking in terms of actors is, in many ways, much more intuitive
for us to think about when designing systems. The way actors inter‐
act is more natural to us since it has, on a simplistic level, more in
common with how we as humans interact. This enables us to design
and implement systems in ways that allow us to focus more on the
core functionality of the systems and less on the plumbing.

44 | Chapter 6: Conclusion



About the Author
Hugh McKee is a solutions architect at Lightbend. He has had a
long career building applications that evolved slowly, that ineffi‐
ciently utilized their infrastructure, and that were brittle and prone
to failure. That all changed when he started building reactive, asyn‐
chronous, actor-based systems. This radically new way of building
applications rocked his world. As an added benefit, building appli‐
cation systems became way more fun that it had ever been. Now he
is focused on helping others to discover the significant advantages
and joys of building responsive, resilient, elastic, message-based
applications.


	Cover
	Lightbend
	Copyright
	Table of Contents
	Chapter 1. Introduction
	Summary

	Chapter 2. Actors, Humans, and How We Live
	Actor Supervisors and Workers

	Chapter 3. Actors and Scaling Large Systems
	A Look at the Broader Actor System
	How Actors Manage Requests
	Traditional Systems Versus Actor-based Systems
	Expanding into Clusters of Actors

	Chapter 4. Actor Failure Detection, Recovery, and Self-Healing
	Actors Watching Actors, Watching Actors...

	Chapter 5. Actors in an IoT Application
	Location Transparency Made Simple

	Chapter 6. Conclusion
	About the Author



